布条百科 - 专业百科知识分享的网站 手机版
首页 > 生活 >

节气门位置传感器怎么测量(节气门位置传感器的检测方法!)

333次浏览     发布时间:2023-03-03 22:30:06    

节气门位置传感器,是汽车电子控制系统中最重要的传感器,主要用于发动机电子燃油喷射系统和电控自动变速器系统。节气门位置传感器安装在节气门体上节气门轴的一端,探测或监测节气门开度的大小和变化的快慢,并把位置信号转变为电信号后输入电控单元。用于判别发动机的各种工况,从而控制不同的喷油量和点火正时。在装备电子控制自动变速器的汽车上,节气门位置传感器信号是变速器换挡和变矩器锁止时的主要信号。

目前发动机电控系统主要采用的节气门位置传感器有霍尔元件式和双滑动电阻器式。丰田凯美瑞、卡罗拉等采用了霍尔元件式;日产天籁、通用凯越汽车采用双滑动电阻器式。

霍尔式节气门位置传感器

1. 结构原理与安装位置

2016款丰田凯美瑞混合动力车型(发动机型号6AR-FSE)采用了非接触式双霍尔元件式节气门位置传感器,其结构如下图所示。它主要由霍尔元件和磁铁组成,其中磁铁安装在节气门轴上,并可以绕霍尔元件转动。

霍尔式节气门位置传感器的控制电路及信号输出的特性如上图所示。当节气门开度变化时,磁铁随之转动,从而改变了与霍尔元件之间的相对位置,霍尔集成电路由磁轭环绕。霍尔集成电路将磁通量产生的变化转换为电信号,并以节气门位置信号的形式将其输出至ECM。

节气门位置传感器有两个传感器电路:VTA1和VTA2,各自发射一个信号。VTA1用来检测节气门开度,VTA2用来检测VTA1的故障。传感器信号电压与节气门开度成比例,在0 ~ 5V之间变化,并且传送到ECM端子VTA1和VTA2。

节气门关闭时,传感器输出电压降低;节气门打开时,传感器输出电压升高。ECM根据这些信号计算节气门开度,并控制节气门执行器来响应驾驶员输入。这些信号同时也用来计算空燃比修正值、功率提升修正值和燃油切断控制。

2. 电路连接

2016款丰田凯美瑞混合动力版节气门位置传感器电路如下图所示。

节气门位置传感器集成在节气门体总成E16内。E16有6个插脚。插脚1和2为节气门执行电动机控制端口。插脚6和4分别输出节气门位置信号VTA1和VTA2到发动机控制单元端口E81(F)的122#和88#。插脚5是来自发动机控制单元121#提供的VCTA 5V 参考电压;插脚3通过发动机控制单元120# 接地。

3. 检测

① 检查传感器供电。点开节气门体插接器E16,用万用表测量E16/5 和E16/3之间的电压,应为4.5~5.5V。否则,检查ECU电源电路。如果ECU电源电路正常,则更换ECU。

② 检查传感器的信号电压。连接故障诊断仪,接通点火开关,踩动加速踏板,并读取节气门位置传感器数据VTA1和VTA2读数,数值应符合下表。

传感器输出电压标准值

③ 检查传感器线束及插接器。断开节气门体插接器E16和发动机控制单元ECM插接器E81,按照下表所示检查插接器之间或插接器与车身接地之间的电阻值。电阻值应符合表中所示,如不符合更换或检查线束。

线束检查

滑动电阻式节气门位置传感器

1. 结构

滑动电阻式节气门位置传感器,又称线性输出式节气门位置传感器、可变电阻式节气门位置传感器、电位计式节气门位置传感器。目前双可变电阻式节气门位置传感器正被大量应用到汽车中。

滑动电阻式节气门位置传感器为三线式传感器,其中两个针脚处于电阻的两端,并作为电源端子和搭铁端子由发动机ECU提供5V电压,第三个针脚连接于滑动触点。节气门轴与触点(或称触头)联动,节气门转动时,滑动触点可在电阻上移动,引起滑动触点电位的变化,利用电阻的变化将节气门位置信号转换成电压值。因为这个电压呈线性变化,所以也称为线性输出式节气门位置传感器。根据这个线性电压值,ECU可感知节气门的开度,使ECU进行喷油量修正。

滑动电阻式节气门位置传感器的线路连接

2. 传感器检测

2013款别克凯越车系节气门位置传感器电路如下图所示。

发动机控制模块给节气门位置传感器提供5V参考电压电路,并向低参考电压电路提供接地。节气门位置传感器所提供的信号电压随节气门开度的变化而变化。节气门位置传感器信号电压在怠速运行时小于0.5V。节气门位置传感器电压在怠速运行时一般接近0V,但可能高达0.5V。在节气门全开(WOT)时,节气门位置传感器电压应增加到4V以上。

节气门位置传感器检测如下:

① 关闭点火开关,断开节气门体总成上的线束接头。

② 测量节气门位置传感器5V参考端子2#和低压参考端子1#之间的电阻是否在5.0~5.3kΩ。如果电阻不在规定范围内,则更换节气门体总成。

③ 测量节气门体总成器信号端子3#与低压参考端子1#之间的电阻。在全范围内检测节气门传感器。电阻应在2.5~6.8kΩ间变动,并无任何高峰或低谷。如果电阻不在规定范围内或不稳定,更换节气门体总成。

④ 用5V电压和接地对节气门传感器的适用端端子进行连接,检测信号端子与低压参考端子间的电压。在全范围内检测节气门传感器。电压应在0.6~4.7V间变动,并无任何高峰或低谷。如果电压不在规定范围内或不稳定,更换节气门体总成。

3. 双可变电阻式节气门位置传感器

双可变电阻式节气门位置传感器中两个传感器一般组合安装,当一个传感器发生故障时能及时被识别,增加了系统的可靠性。从两个传感器输出信号的变化关系来看,有反相式、同相式两种。同相式又可分为同斜率线性变化和不同斜率线性变化两种。

BOSCH公司双可变电阻式节气门位置传感器结构及内部电路如下图所示。

节气门轴上的双轨道节气门位置传感器用来监控节气门准确开度,节气门位置传感器(两个电位计)的滑片与节气门同轴。当节气门转动时,电位计滑片同步转动。

当加上5V工作电压后,变化的电阻转化为电压输出信号。电位计的输出电压随节气门的位置变化而改变,可使控制单元准确知道节气门的开度。由于两个电位计是反相安装,因此当节气门位置发生变化时,两路信号电压均线性变化,其中一个增加,同时另一个减小。

日产车系节气门位置传感器输出特性

日产天籁车系双可变电阻式传感器电路

发动机控制单元ECM通过72#端子向传感器1#端子提供5V参考电压;传感器4#端子通过电控单元36#端子接地。传感器2#端子和3#端子输出TPS1和TPS2节气门位置信号分别送到发动机控制系统的33# 端子、36#端子。

双可变电阻式节气门位置传感器的检查(以日产天籁为例)如下:

打开点火开关,将换挡杆换到D挡(A/T)或1挡(M/T),使用万用表电压挡分别检查ECM的端口33(节气门位置传感器1#端子的信号)、34(节气门位置传感器2#端子的信号)在加速踏板不同状态时与接地之间的电压,检查结果应符合下表规定。如不符合则更换节气门体总成。

节气门位置传感器输出电压标准值

内容来源于图书!

相关文章

为什么涂料老是开裂(为何家里的乳胶漆总是容易出现开裂)

近年来,许多人在墙面装修的时候,都会选择刷乳胶漆,乳胶漆颜色丰富,耐脏和耐擦洗性出色,实用性高。但是,为何有的人家里的乳胶漆总是容易出现开裂,经过有老师傅提醒,才发现原来是这5点没做好。1、墙面粘结强度不够许多人在房屋刷乳胶漆后,老是出现开裂和空鼓,这主要因为墙面粘结强度不够,建议大家,将原先的墙皮

2025-05-12 23:48:02

为什么防漏电插座不会漏电(从功能上识别插座安全性)

安全插座到底要如何选择?选择什么样的安全插座才能保证儿童安全?现在市场上安全插座五花八门,个个都声称是“安全插座”,这给广大家长们在选购中带来了不少困扰,众所周知,市面上所谓的“安全插座”其实并不安全。伪劣产品众多。这也严重威胁儿童的用电安全。前段时间央视《每周质量报告》节目也曾对当前市场上的插座安

2025-05-12 22:58:21

大红酸枝木为什么开裂(买了大红酸枝家具,偶尔听到炸响怎么办?)

买了大红酸枝家具,偶尔听到炸响怎么办?其实大红酸枝家具炸想属于正常现象。那是红木家具开裂发出的声音,不必大惊小怪。小编在网上查看到很多用户在购买大红酸枝家具之后,发现家具会有炸响的现象,这到底是怎么一回事呢?下面我们一起来看看其中的原因以及维修的方法:红酸枝家具之所以容易开裂炸响,主要是因为红酸枝属

2025-05-12 22:55:32

为什么墙身瓷砖脱落(墙上的墙砖老是掉,还是要讲点道理)

墙砖被师傅贴在墙上,时间没到过多久,就出现很多墙砖掉落,甚至有些还会大面积出现脱落的现象。有不少人的房主不知道其缘由,事后就会将所有的原因全部怪在贴砖师傅身上,责任是否真的如房主所想呢?责任的归属,对于这行业有接触过的人,都还是有着一定的了解,施工人员的正确施工,确实对瓷砖脱落,有着一定的关系,但也

2025-05-12 22:40:24

水泵为什么频繁启动(自吸泵怎么吸不出来水)

1自吸泵怎么吸不出来水自吸泵抽不出水的原因及排除方法:自吸泵在使用的过程中,有时会出现不出水的问题。这就需要找出具体原因加以排除。造成自吸泵抽不出水的原因及排除方法有以下三种可能性:1-1 自吸泵体内无引水或存水不足。只有自吸泵的泵体内存有一定量的水,才能在起动。因旋转时的叶轮所产生的离心力将进水管

2025-05-12 20:32:27

为什么有暗卫的房子(为什么豪宅多暗卫?)

日常在和朋友的交流中,朋友提出最多的问题就是高端户型中为什么会有这么多的暗卫,在产品研发的过程中能够避免吗?今天就对这个问题进行简要的分析。一、主次功能房间的划分要求暗卫产生的最主要原因,是因为豪宅户型面积过大,且面宽有限,进深过长,因此在户型内部就形成了一些“暗角”,相比于对采光通风要求更高的客餐

2025-05-12 20:23:59